A SYSTEM FOR RAPID MEASUREMENTS OF RF AND
MicroOWAVE ProPERTIES Ur 1O 1400°C

Part 1: Theoretical Development of the Cavity Frequency-Shift Data Analysis Equations
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A system has been developed, based on the cavity frequency
shift technique, for doing rapid measurements of the scalar
permittivity and permeability of samples. The basic cavity
frequency shift equation is reviewed, and the practical
formulae, which are used for determining the values of € and
M from the cavity frequency and Q shift, are developed.
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simple system (Figure 1) has been developed for
A doing rapid studies of complex scalar permittivity

and permeability between 50 MHz and 2450 MHz,
and up to a temperature of 1400°C. The traditional resonant
cavity frequency shift technique is used, where a sample is
introduced into either the electric or magnetic field region of
acavity and the change in frequency and Q are related to the
permittivity (¢' and £") or the permeability (' and p") of the
sample. A smallcylindrical sample, mounted inathin-walled
low loss sample holder tube, is heated and then inserted into
awell-cooled resonant cavity whose resonant frequency and
Q are determined. The data analysis assumes the general
formalism of resonant cavity perturbation theory, but relies,
for absolute calibration, either on measurements of known
materials or on exact calculations of the frequency shift and
Q using the 2-D code SEAFISH [de Jong et al., 1992].

The "cavity perturbation” technique has the reputation
of limited accuracy, possibly because of the use of the term
"perturbation” in common reference to it. In fact, the basic
equation for the frequency shift of aresonator caused by putting
asampleinitisexact,and known approximations are generally
used when applying the equation to practical analysis. We
have reviewed the fundamental equations and, for
completeness, show the development of approximate formulae
which we use for data analysis. Another paper of this group
[Adams et al., 1992] looks at the detailed comparison of the
present derived data analysis formulae with exact numerical
calculations.

Theory for the Determination of Complex
Electric and Complex Magnetic Susceptibilities
Using the Resonant Cavity Frequency Shift
Technique

The resonant cavity frequency shift formula has been derived
and presented by many authors, including Bethe and
Schwinger [1943], Maier and Slater [1952], Von Aulock and
Rowen [1957], Spencer et al. [1965], and Altschuler [1963].
The generalized formulation shows that, in principle, both €'
and " can be determined for a sample by the measurement of
the frequency shiftand change in Q produced by introducing
the sample into a resonant cavity. In practice, the theory
contains a dependence on the shape of the sample which can
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FIGURE 1: Schematic drawing of a simple apparatus
for measuring the high temperature complex dielectric
constant of inserting a hot sample rapidly into a well-
cooled cylindrical cavity driven in the TMy;p mode.

be analytically solved only for ellipsoids of rotation [Maier
and Slater, 1952]. Various limiting shapes (long needles, thin
discs) are useful for diagnostics work but are of limited use
forquantitative work [Maier and Slater, 1952]. The spherical
shape, for which analytic solutions exist, isnot convenient for
manufacturing test samples.

These problems, coupled with a lack of appreciation of
the complete theory, have led to a general mistrust of, or at
least uneasiness with, what is often called the "cavity
perturbation technique”. The following review is intended to
provide an understanding of the exact analytical theory and
of the approximate form of the relations often used in data
analysis.

Resonant Cavity Frequency Shift Formulae
The basic equations for the change in "complex” frequency

caused by replacing sample #1 with sample #2 in a resonant
cavity with lossless metal walls were derived following the
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article in Sucher and Fox [Altschuler, 1963], and one form is

1

where V. is the cavity volume; subscripts 1 and 2 denote
values with samples 1 and 2, respectively; where , €, L, E,
H are the resonant frequency, permittivity, permeability,
electric and magnetic fields; and * denotes the complex
conjugate. All these quantities are complex and the vectors
have an e/ time dependence. It is important to note that

The complex frequency, @, can beexplicitly represented
by

w=2rnf+ja, oa=2xf2Q) 2)

where o is the usual rate constant for the decay of the fields

in the cavity. The left hand side of Equation (1) is then
expanded as

*
0)2'(01_ fz'f1+j(fi. 1 = 1 ) g1 i
‘”; f b e 20 Q
(3)

-1

where 1/Q; and 1/Qq include only loss contributions from the
samples.

The complex permittivity and permeability are usually
represented with so-called real and absorptive (imaginary)
parts, with

L

g=¢-je"=lele E

4)
38

p=p -jp=lpte ™

where, for example, 8¢ is the amount that the phase angle
between the total current (including displacement current) in
the material and the electric field in the material differs from
90° if 8y is zero.

Thus

"

e O]
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E- € M

=
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The complex scalar susceptibilities are similarly defined, with

€ -¢
Xe= % =X -i X"
0
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H-U, . ©
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If sample #1 permeability and dielectric constantare those
of free space (i.e.,an empty cavity with ply =|ip,€1 =€p), then
®, isreal (1/2Q; =0) and, if sample #2 volume (V) is small
compared to the cavity volume,

- = . g g
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v
S
et
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where the integral in the denominator is four times the initial
stored energy, as l—':’l and f-fl are peak field values. This isan
approximation that neglects the field change over the small
volume of the sample relative to the field integral over the
large volume of the empty cavity. The maximum fractional
error produced by this approximation occurs for large € and
is €10 V¢ V.. For normal measurement conditions, this is
much less than 1%. An iterative analysis technique would
reduce errors introduced by this approximation.

When applied to measurements on an actual cavity, the
left hand side of Equation (7) must be written as

‘*’2""1_13_f+J 1+Af 1
1 0,

at 1 _1
3 Q W

@®
v

where Qq g is the loaded Q of the empty cavity, Qs isthe

M

= . = . -
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loaded Q of the cavity with the sample init. The approximately
is to the order of Af/f, or usually less than 0.1%. Equation (8)
shows how the contributions to the resonance width resulting
from (a) the finite conductivity of the metal walls of the cavity
and (b) the coupling to the driving and sensing devices are
subtracted, resulting in the pure loss contribution from the
sample.

The resonance condition in a single mode cavity
necessarily produces spatial separation of magnetic and
electric field maxima. For example, in a TMy;9 mode in a
cylindrical cavity, the electric field isamaximum on axis, while
the magnetic field goes exactly to zero on-axis. Thusasample
on axisinsuchamode distribution may inmost cases be treated
as being in pure electric field only.

Under these conditions, Equation (7) reduces to

éL“’(mz)

JE((DegfE (D
v )
2Je0 l( JeE (T)dv

For a sample placed in aregion where the magnetic field
is dominant, an "effective” scalar permeability may be
extracted using

A—f+j (—-—1 )- X o VS
- - =3
g 2Q, T 2 [pH (T)eH (T dv
v 01 1

(10

where H; is the unperturbed cavity RF field. (The
magnetizationis, in general, atensor quantity with off-diagonal
elements, and formulae have been developed for the full tensor
treatment {Von Aulock and Rowan, 1957].)

If a sample whose shape is an ellipsoid of rotation with

 eccentricity e is inserted into what initially was a region of

static uniform electric or magnetic field, then the field inside
the sample will be constant and uniform in direction (see
Figure 2).

The expression for the static electric fieldin suchasample
with the "a" symmetry axis aligned in the direction of the initial
electric field is [Straton, 1941)
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Eo= 5 (11)
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where Fshe , the shape factor for static electric fields, is given
by

2
1<
Fsh = ( ) [—l—ln (-li

e e2 2e 1-e

-1]fore>0 (12)
As ¢ — 0 (i.e., a sphere), Fsh, — 1/3.

In the limit when the characteristic sample dimension is
small relative to the characteristic wavelength in the sample,
the RF field will be approximately the same as in the static
case. Thus, inserting the expression for the static internal field
into the RF frequency-shift formula and assuming the sample
is small relative to the RF wavelength in the sample material
and that the empty cavity electric fields are uniform over the
small volume which the sample will occupy, one has

= - 2
. lEl(rS)l (13)
= - 2 v
2 JIE (p)I"df —
JIEDra(Y)

where r; isthelocation of the samplein the cavity. The quantity
in the final square brackets is real, is a function only of the
cavity shape and the specific cavity mode, and will be a
calibration constant.

Exceptions to this formulation occur when the assumption
of a single dominating electric (or magnetic) field is not
sufficiently accurate. This is the case for materials for which
one of the complex frequency shift components produced by
the dominant field is so small that the contribution from the
small field influence is still significant. An example of this
occurs for dielectric property measurements on very low
dielectric loss ferrites which, however, have very large
magnetic losses; i.e., L" >>€" . Especially in the case where
€' islarge, the displacement current in the finite radius sample
can produce sufficient magnetic field in the sample to incur
measurable magnetic loss. Under such conditions, the
magnetic field in a rotationally symmetric sample on-axis in
a TMoy, cavity is given in cylindrical coordinates by
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FIGURE 2: Illustration of the electric fields in an
ellipsoid of rotation introduced in an initially uniform
field region.
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= 14
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where € is the relative complex dielectric constant of the
sample. Substituting into the numerator of Equation (7) and
making the previously described approximations and
substitutions, one obtains amodified version of Equation (13).
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where & is the complex dielectric constant of the material
I, is the radius of the cylindrical sample
A¢ is the free space wavelength of TEM radiation at
the measurement frequency.

The commonly used, simple form for the dielectric shift,
Equation (13), can be rewritten to more easily demonstrate its

properties:

V
Af 1 Xe
() Ty W

where the quantity in square brackets is a real constant which
depends only on the shape of the empty cavity fields.
Itshould be emphasized that both the real and absorptive
partsofthe dielectric constant are given by Equation (16) using
the single value of the real constant, A. If, as is often done,
the real and imaginary parts are separated into two equations,
there is still only one common calibration constant. Thus the
calibration constant can be determined experimentally using
low loss materials and then later applied exactly to lossy
materials! For large X, the fractional frequency shiftreaches
a limiting valuc which depends on the sample volume and

shape; a metallic sample of the same size and shape produces -

this maximum frequency shift. For example, a long thin
ellipsoid (Fshe <0.1) produces a larger shift than a sphere of
the same volume.

The magnetic field in a sample is given by an expression
similar to Equation (11) when the sample is an ellipse of
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rotation with the "a" symmetry axis aligned in the direction
of the initial magnetic induction.

H1
H, = ~—s57 a7
S 1+X Fsh,
where, because of the different boundary conditions, the
magnetic shape factor isdifferent from the electric shape factor.

a9’ [ 1 1
+€
m 2e2 I:l-ez 2c ] (18)

For e — 0 (i.e., a sphere), Fshy, — 1/3.

Inserting the expression for the internal magnetic field
into the frequency shift formula, one has

'é't:'+j 1 ~ 'xm . _V_S_
£, Q) (1+Fsh X ) Ve

af - (19)
(%)

As with the electric case, this may be rewritten to more
easily demonstrate its properties:

Af = X . -\-’-S—. (B]
2Q2 (1+Fsh, X)) Ve (20)

The quantity in square brackets is areal constant, as is the
shape factor. Again, the maximum frequency shift for large
Xm is dependent only on the sample size and shape, and is
larger for a sphere (Fshy, = 1/3) than for a long thin ellipsoid
of the same volume (Fshy, = 0.45 for a major to minor axis
ratio, c/a =23 1/3. .5')

The frequency shift produced by a high-conductivity
metallic ellipsoid in a magnetic field is obtained by putting
Xm=-1. Inthiscase, the RF currents induced on the surface
of the metal generate an RF magnetic field distribution which,
when summed with the applied RF magnetic field, produces
zero magnetic field in the bulk of the metal, equivalent
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to ‘m =0 (thatis, Xy, =-1). Thus the sign of the frequency
shiftcaused by inserting a metal perturber intoa magnetic field
is opposite to that produced by a permeable material.

The accuracy with which the cavity frequency-shift
technique can, in principle, measure complex susceptibilities
isclearly a function of the sample dimensions (relative to the
cavity dimensions), the sample shape, and the absolute value
of the sample susceptibility. For cylindrical samples (rather
than ellipsoids of rotation) the shape factor presented here is
not applicable. In fact, it must be reduced by almost a factor
of two to yield the correct frequency shift for the case of a
cylindrical sample with length to diameter ratio, (£/d) = (a/c)
=3.5. This problem of shape factor "correction” for practical
samples is addressed in a further paper [Adams et al., 1992],
where, by comparison with exact numerical calculations, if
Equation 16 is suitably calibrated for sample shape, the error
in the measured permeability is < 5% if €, and ¢," are less
than 30.
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